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1.0 INTRODUCTION

Failure Analysis Associates, Inc. (FaAA) was funded under the Computational
Mechanics Program element of the Balanced Technology Initiative (BTI) to develop
improved dynamic failure models for brittle materials (primarily ceramics). Our
approach to developing these failure models was to establish a database (ACERAM)

in which fundamental material properties and processing information could be
directly correlated with ballistic performance data.

1.1 Background

The data collection and database development step was nearly completed under BTI

funding, which covered the contract from October 1988 to September 1990. The
project was then extended (without funds) to September 1991 and funding was

* sought to (1) expand data collection activities to complete the database and (2) apply
FaAA-developed statistical analysis techniques to critically evaluate the data and to

identify those fundamental physical and microstructural properties that control the
deformation (if any) and failure of brittle materials during penetration. This

* planned approach is shown schematically in Figure 1. In fact, however, FaAA's

proposal for additional funding was rejected in December 1991. This final report,
therefore, documents the contract effort to September 1990 and subsequent

publications stemming from this work.

0
1.2 Problem Statement

The select database of "useful" information on the ballistic performance of ceramics

* that was to result from this project would have been the most extensive ever

constructed in the free world. Existing ballistic data bases (there are at least two

other available ceramic armor data bates, AADS [11 and Chicken Little [2]) contain
little specific information on materials properties and characteristics, nor are they

• necessarily structured to permit one-to-one comparisons of the effect of specific

materials characteristics on performance under equivalent ballistic test conditions.
Because of its size and scope, the comprehensive materials-oriented database for

brittle armor materials that was to result from this project would have enabled
researchers to determine key propertics and processing vriab!es on which to focus

their efforts.

I
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2.0 SUMMARY OF RESULTS

The emphasis of the project in the first two years was to evaluate the literature and
survey private industry and government laboratories for appropriate data. Several
hundred open literature papers and technical reports were reviewed for usable data,
and links were established with available existing databases. A committee -
consisting of representatives from FaAA, the U.S. Army Tank Command (TACOM),
the Army Materials Technology Laboratory (AMTL), the Ballistics Research
Laboratory (BRL), and Los Alamos National Laboratory (LANL) -- was also formed
early in the project to oversee our data collection activities (to prevent duplication)
and to develop a standardized list of properties and processing variables to be
collected on candidate brittle armor materials.

2.1 Data Collection

Data (both classified and unclassified) was collected from existing databases, from
published reports/papers in the open literature, and from unpublished test data
from government, university, and industry laboratories on the subjects of (1)

ballistic performance of ceramics and (2) ceramic material properties governing
impact performance. As a result of these efforts, an extensive collection of useful
data was compiled for initial analyses of the material and processing variables that
affect the ballistic performance of ceramics. Unclassified reports/papers containing

material that contributed significantly to the database include those from Lawrence
Livermore National Laboratory (LLNL), the Naval Research Laboratory (NRL), the
University of California at Berkeley (UCB), and AMTL, among others. Those
unclassified papers that were determined to be most useful are listed in Table 1.

Classified papers that we expected to be useful in this research are identified in Table

2. Appropriate clearance was established with DTIC late in the project, so collection
and review of this material never began.

FaAA was also able to establish some important industry and government contacts
who agreed to contribute data to this program. A listing of the data that has been

3



Table 1

USEFUL DATA SOURCES FROM THE OPEN LITERATURE

Ferguson, W.J. and Rice, W.J. "Effect of Microstructure on the Ballistic

Performance of Alumina," Naval Research Laboratory, NRL Memorandum

Report 2302, August 1971.

Landingham, R.L. and A.W. Casey, Semiannual Progress Report of the Light-

Armor Materials Program, Lawrence Radiation Laboratory, University of

California, Livermore, UCRL-51066, June 1971.

Mayseless; M., Goldsmith, W., Virostek, S.P., and Finnegan, S.A., "Impact on

Ceramic Targets," Impact Loading and Dynamic Behaviour of Materials, editor:

Chien, C.Y., Oberursel, Germany: DGM Informationalsgesellschaft mit

beschrankter Haftung, Vol 1, 1988, pp. 407-414.

Mescall, J.F. and Tracy, C., "Improved Modeling of Fracture in Ceramic Armors,"

Army Science Conference Proceedings, Vol 3, June 17-19, 1986, pp. 41-53.

Rosenberg, Z. and Yeshurun, Y., "The Relationship Between Ballistic Efficiency

and Compressive Strength of Ceramic Tiles," International Journal of Impact

* Engineering, Vol. 7, no. 3, 1988, pp. 357-362.

Rosenberg, Z., Bless, S.J., Yeshrun, Y., and Okajima, K., "A New Definition of

Ballistic Efficiency of Brittle Materials Based on the Use of Thick Backing Plates,"

Impact Loading and Dynamic Behaviour of Materials, editor: Chiem, C.Y, et al.,

Oberursel, Germany: DGM Informationalsgesellschaft mit beschrankter Haftung,

1988, pp. 491-498.

Tracy, C., Slavin, M., and Viechnicki, D., "Ceramic Fracture During Ballistic

Impact," Fractography of Glasses and Ceramics (Advances in Ceramics), American

Ceramic Society, Westerville, Ohio, Vol 22, 1988, pp. 295-306.
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Table I Continued

Viechinicki, D., Blumenthal, W., Slavin, M., Tracy, C., and Skeele, H., "Armor

Ceramics-1987," Third TACOM Armor Coordinating Conference for Light Combat
Vehicles, Vol. 1, February 17-19, 1987, Monterey, California.

Viechnicki, D.J., "Factors Controlling the Ballistic Behavior of Armor Ceramics,"
Army Science Conference Proceedings, Vol 4, June 17-19, 1986, pp. 233-247.

Wilkins, M.L., "Use of Boron Carbides in Lightweight Armor," Boron and
Refractory Borides, editor: Matkovitch, V.I., Springer-Verlag, Berlin, Germany,

1977, pp. 633-648.

Wilkins, M.L., C.R. Cline, and C.A. Honodel, Fourth Progress Report of Light
Armor Program, Lawrence Radiation Laboratory, University of California,
Livermore, UCRL-50694, 1969.

Wilkins, M.L., R.L. Landingham, and C.A. Honodel, Fifth Progress Report of Light
Armor Program, Lawrence Radiation Laboratory, University of California,
Livermore, UCRL-50980, January 1971.

Wilkins, M.L., Third Progress Report of Light Armor Program, Lawrence
Radiation Laboratory, University of California, Livermore, UCRL-50460, 1968.

Xavier, C. and da Costa, C.R.C., "A Study of the Mechanical Behavior in Ballistic
Impact of Alumina Plates," Ceramica, Vol 30, No. 175, July 1984.
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Table 2

USEFUL CLASSIFIED LITERATURE DATA SOURCES

Abbott, K.H. and Semple, C.W., "Attributes and Limitations of Lightweight

Armor," Proceedings of Symposium on Lightweight Armor Materials, AMRA

MS-65-01, 326-339, AD 360 764L, U.S. Army Materials Research Agency, March

1965. (Secret Report).

Adams, Hale, and Zwissler, "Advanced Materials Technology Development

Project Phase 1," JPL Report No. D-382, Vol. IV, Part 1, January 1, 1983.

Amos, C.W., "Dissemination of Armor Materials Ballistic Performance,"

Proceedings of Symposium on Lightweight Armor Materials, AMRA MS-65-01,

AD 360 764L, March 1965, pp. 295-301, (Secret Report).

Askins, D., Bless, S., Hanchak, S., Hartman, 7D, and Ror. ieau, R., "Multi-hit

Ceramic Armor for 30APM2," Fourth TACOM Armor Coordinating Conference,

Vol 2, 1988.

Contiliano and Thorpe, "ARAP Activity During Phase 2 of Lightweight Structural

Armor Program," ARAP Report #510, December 1, 1983.

Contiliano, R.M. "1982 Annual - DARPA Composite Armor Technology

Program," ARAP Report #497, AD-C034-846, May 1, 1983.

Contiliano and Snedeker, "In:proved Lightweight Structural Armor," ARAP

Report NSWC TR82-48, August 1, 1981.

Contiliano and Snedeker, "Annual Report for 1981 in Composite Armor

Technology Program," ARAP Report No. 455, Vol. 2, December 1, 1981.
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Table 2 Continued

Florence, A.L. and Ahrens, T.J., "Interaction of Projectiles and Composite Armor,"
AMRA CR. 67-05 (F), U.S. Army Materials Research Agency, Watertown,
Massachusetts, January 1967.

Gooch, W. "30-amm APDS Threat Surrogate," BRL-MR-3568, March 1, 1987.

Mascianica, F.S., "Ballistic Technology of Lightweight Armor," AMMRC TR 81-20,
May 1, 1981.

Mascianica, F.S., "Effect of Back-up Thicknrss of 2024 Aluminum on the Ballistic
Efficiency of A1,0 3 Aluminum Composites," AMRA TA ABI-10, U.S. Army

Materials Research Agency, June 1965 (Confidential Report).

Mascianica, F.S., "Effect of Boron Carbide Tile Size on Ballistic Efficiency," AMRA
TR AB1-5, U.S. Army Materials Research Agency, April 1965 (Secret Report).

Persh, J., "DOD Armor Materials Programs," DCIC Current Awareness Bulletin,

Office of the Director of Defense Research and Engineering, Chemical Technology,
Materials Division, No. 14, 12-13, Januar', - lebruary 1969.

Reed, E.L., and Kruegel, S.L., "Correlation of Microstructure and Ballistic

Properties of Armor Plate," Report 710/261, AD 626 124, U.S. Army Watertown
Arsenal, July 11, 1938.

Semple, C.W., "Ballistic Behavior of Ceramic Composite Armors," AD 374 334,

U.S. Army Materials Research Agtncy, June 1966 (Secret report).

Semple, C.W., "Ceramic Composite Armors,"AMRA TR -65-26, AD 367 071L, U.S.
Army Materials Research Agency, October 1965 (Secret Report).
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Table 2 Continued 

Semple, C.W., "Fundamental Material Properties Effects on Ballistic Protection of 

Lightweight Ceramic Composite Armor," AMRA TR-65-06, AD 362 260L, U.S. 

Army Research Agency, April 1965 (Secret Report). 

U.S. Army Tank Automotive Command, Second TACOM Armor Coordinating 

Conference for Light Combat Vehicles, November 1, 1985. 

Tarpinian, A., Semple, C.W., and Hannon, F.S., "Ceramic Armor," Proceedings of 

the Second Symposium on Lightweight Armor Materials, AMRA MS-66-07, AD 

378 972, U.S. Army Materials Research Agency, Vol.1, October 1966, pp. 215-254 

(Secret Report). 

Taylor, J.W., "Properties of Materials of Interest for Lightweight Armor," Report 

LA-3858-MS, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, January 

22, 1968 (Confidential). 

Wilkins, Herd, and Snowden, "Advanced Armor System to Defeat KE Projectiles 

and Precision Shaped Charges," UCAL-53268-82, Lawrence Livermore Laboratories, 

May 1,1982. 

"Representation and Use of Ballistic Limit Data," AB1-65, U.S. Army Materials and 

Mechanics Research Center, Prototypes Laboratory, January 15, 1967 (Special). 
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contributed to the analysis effort is presented in Appendix A. Programs and

organizations that had promised additional information include:

* Dow Chemical - Dow has collected much data on the ballistic

performance of ceramic armors over the last few years. They agreed to send

us the aluminum nitride data that they have collected as part of the BTI

program.

* W.R. Grace -W.R. Grace agreed to send us ballistic test data on A1203,
TiB2, SiC, and A*B (A1203 and B4C) samples that they have formulated.

DARPA Armor program - Ballistic test data from the participants in the
Blue Armor Program [DUPONT, ALCOA, Alliant Tech Systems (formerly
Honeywell), and FMC] would have been an important addition to the
database.

University of Dayton Research Institute (UDRI) - UDRI agreed to send us
draft copies of classified work that they are doing with lightweight ceramic
armors for Wright-Patterson Air Force Base.

Coors Ceramics Company - Coors agreed to work with us in identifying
material properties and processing techniques for any materials
manufactured by Coors that are not reported in available research papers or
reports.

The following government laboratories also provided previously unpublished

data to the project:

" Los Alamos National Laboratory - LANL was completing a test program
on the ballistic performance of B4C and A1203 ceramics. They agreed to
send a copy of the unclassified preliminary report, and a copy of the final
report when it becomes available. We were sent a copy of the Phermex
photographs of this test program.

LANL was also monitoring a test program to evaluate the ballistic
performance of B4C and SiC ceramics.

"* Ballistics Research Laboratory - BRL has a significant amount of ballistics
data on SiC, B4C, and A120 3 that had not yet been published.

If a follow-on study is ever funded, it would be worthwhile to pursue these contacts.

9



2.2 Database Development

0 The format for the database was established and is shown in Figure 2. The
completed database, called ACERAM (Advanced CERamic ArMor), would have
used the "4th dimension" relational database software on a Macintosh computer. It

was anticipated that this user-friendly database would be the most complete set of
0 "useful" data on the ballistic performance of ceramics that had ever been assembled,

and that its data set would be the foundation for the data correlation analysis effort.

This is as far as the database development effort progressed under the aborted
contract.

2.3 Tungsten/Depleted Uranium Review

In a related effort, FaAA was asked to review the information available on the
* dynamic properties of tungsten and DU, and review the mechanisms of penetration

and ballistic performance for these two materials. This review, "A Review of High
Strain Rate Properties and Penetration Mechanisms of Depl.eted Uranium and
Tungsten Alloys," was presented at the April 1990 ARDEC/ARO workshop on

* "Metallurgical Aspects of Deformation/Failure Mechanisms in (The Terminal

Ballistics of Heavy Metal) Kinetic Energy Penetrator Materials." The purpose of the
workshop was to evaluate the current status of properties, penetration mechanisms,

and performance of tungsten and DU penetrators. Penetration mechanisms are of
& particular interest, as it is felt that the differences in these mechanisms may be the

reason why DU and tungsten penetrators perform differently.

In support of this effort, FaAA reviewed classified and unclassified literature and
* contacted government agencies, federal and university laboratories, and private

industries. These efforts provided us with over 100 papers/reports on tungsten/DU

penetration and over 30 government and industry contracts.

A detailed review paper was submitted to The Minerals, Metals, and Materials
Society (TMS) and published by them in 1991. A copy of this paper is included as
Appendix B.

10



Figure 2 Army CER amic ArM or Database Layout
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FaAA's conclusions, based on available data, include:

DU and tungsten alloys respond diffeiently to high rate loading conditions, both
in terms of mechanical properties and failure (penetration) mechanisms.
- Under tensile loading, DU alloys exhibit a higher ultimate tensile strength

and a higher strain to failure than do tungsten alloys.
- Under shear loading, DU and tungsten alloys exhibit similar strengths, but

DU exhibits a higher strain to failure.
- Against steel targets, both DU and tungsten tips undergo ductile flow.

However, subsequent penetration results in bulged tip sharpening by
shearing (adiabatic or not). This sharpening ocurs more readily in DU than in
tungsten.

- Against ceramic composite targets, tungsten alloys penetrate by
erosion/localized plastic deformation.

0 The ballistic performance of DU and tungsten alloys against monolithic steel
targets is similar -- at best a 5 to 10% difference. Current improvements in
mechanical properties of DU and tungsten alloys give at best a 5 to 10%
improvement in ballistic performance.

0 Against oblique spaced arrays, DU alloys significantly outperform tungsten
alloys. An increase in ductility/toughness in either alloy can result in a
substantial improvement in ballistic performance.

0 Based on our preliminary findings, it appears that the best way (in the short-
term) to improve the ballistic performance of tungsten alloy penetrators against
oblique spaced arrays is to improve their resistance to fracture during
penetration.

* Based on our preliminary findings, it may also be ultimately possible to achieve
a sharp tip during penetration in tungsten alloys by proper microstructural
control.

3.0 OTHER CONTRACT REQUIREMENTS

The following sections present all contract-required information not covered by the

summary of contract work.

3.1 List of all Publications and Technical Reports

* Andrew, S.P., R.D. Caligiuri, and L.E. Eiselstein, "Relationship between Dynamic

* Properties and Penetration Mechanisms of Tungsten and Depleted Uranium
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Penetrators," Proceedings of the International Symposium on Ballistics,
Stockholm, Sweden (to be presented/published June 1992).

Andrew, S.P., R.D. Caligiuri, and L.E. Eiselstein, "A Review of Penetration
Mechanisms and Dynamic Properties of Tungsten and Depleted Uranium
Penetrators," Tungsten and Tungsten Alloys - Recent Advances, ed. Andrew
Crowson and Edward S. Chen, The Minerals, Metals, & Materials Society, 1991,
pp. 141-149.

Caligiuri, R.D., S.P. Andrew, and T.K. Parnell, "Computational Modeling of
Dynamic Failure in Armor/Anti-Armor Materials," Quarterly and Semi-
Annual ?rogress Reports for Contract DAAL03-88-C-0029, Army Research Office
Proposal number 26164-MS-A (period covered: October 1988 to September 1991).

3.2 List of All Participating Technical Personnel

Dr. Robert D. Caligiuri
* Dr. Lawrence E. Eiselstein

Mr. Stephen P. Andrew
Dr. T. Kim Parnell

* No advanced degrees were earned by these participants during the contract effort.

3.3 Report of Inventions

* No inventions resulted from this contract effort

3.4 Bibliography

* Bibliographic compilations are presented in Appendix A, which is a listing of data
sources compiled for this contract, and Appendix B, which contains an extensive
tungsten/DU reference listing compiled under this contract. In the interest of

brevity, these will not be repeated here.
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Army Science 1986 Conference: Volume 3 Principal Authors M Through R.
Army Science 1986 Conference. West Point, NY. June 17-19, 1986.
Washington, DC: Department of the Army, 1986.

Ballistic Coefficients.
In: Sierra Bullets, n.d.: 359-417.

Ballistic Tests of Armor Materials: Final Report.
Aberdeen Proving Ground, MD: Army Test and Evaluation Command, April
6, 1977.

Ballistics 11th International Symposium: Volume 1 Propulsion Dynamics,
Launch Dynamics, Flight Dynamics.
Ballistics 11th International Symposium. Brussels, Belgium. May 9-11,
1989. n.s.: Belgian Royal Military Academy, 1989: v1.

Ballistics 11th International Symposium: Volume 2 Warhead Mechanisms,
Terminal Ballistics.
Ballistics 11th International Symposium. Brussels, Belgium. May 9-11,
1989. n.s.: Belgian Royal Military Academy, 1989: v2.

Ballistics 11th International Symposium: Volume 3 Body Armour and
Wound Ballistics, Weapon Identification.
Ballistics 11th International Symposium. Brussels, Belgium. May 9-11,
1989. n.s.: Belgian Royal Military Academy, 1989: v3.

Information Services
1



Ballistics 7th International Symposium.
Ballistics 7th International Symposium. The Hague, Netherlands. April
19-21, 1983. The Hague, Netherlands: Seventh International Symposium on
Ballistics, 1983.

Ballistics 8th International Symposium.
Ballistics 8th International Symposium. Orlando, FL. October 23-25,
1984. Wilmington, MA: Avco Systems Division, 1984.

Ballistics 9th International Symposium: Volume 2.
Ballistics 9th International Symposium. Shrivenham, UK. April 29- May

* 1, 1986. n.s., 1986: v2.

DoD/DARPA Coordination Meeting on Advanced Armor/Anti-Armor Materials
and Advanced Computational Methods.
DoD/DARPA Coordination Meeting on Advanced Armor/Anti-Armor Materials
and Advanced Computational Methods. Alexandria, VA. December 13-15, 1988.
Alexandria, VA: Institute for Defense Analyses, March 1989: 2 volumes.

Fiberglass Armor Protects Carrier.
Machine Design, v59 n13, June 11, 1987: 16.

High Density Alloy Penetrator Materials 1977 Conference.
Watertown, MA: Army Materials and Mechanics Research Center, April
1977.

Information Services
2



International Conference on Mechanical and Physical Behaviour of
Materials Under Dynamic Loading (Table of Contents only).
Journal de Physique, v49, September 1988: 11-17.

Kerals and Sitalls: An Assessment of Soviet Technology, Part 2.
McLean, VA: Technical Research Corp., September 21, 1987.

Lightweight Armor Protects Crucial Aircraft Parts.
Design News, v45 n2, January 23, 1989: 36.

Physical Properties of Tungsten-Nickel-Iron Alloys.
n.s., n.d.

Processing of Ceramics: An Assessment of Soviet Technology, Part 4.
McLean, VA: Technical Research Corp., June 1, 1988.

Review of Powder Metallurgy in the USSR: Working-Paper Report.
Columbus, OH: Battelle Columbus Laboratories, April 27, 1984.

Information Services
3



S and T Terminology for Kinetic Energy Penetrators.
Columbus, OH: Battelle Columbus Division, October 7, 1988.

The Shock and Vibration Bulletin: Part 5 Shock, Fragility.
Washington, DC: Shock and Vibration Information Center, December
1970.

Third Progress Report of Light Armor Program.
n.s., n.d.

Tungsten Alloy Boosts Armour Penetration.
International Defense Review, v21 n9, 1988: 1217.

Tungsten and Tungsten Alloys: An Assessment of Soviet Technology, Part
6.
McLean, VA: Technical Research Corp., March 1, 1989.
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Abstract 

Kinetic energy penetrators must possess the best possible 
combination of hardness, stiffness, strength, and fracture 
toughness characteristics to be effective against modem 
armor systems. Over the last decade, depleted uranium 
(DU) and tungsten alloys have been the materials of 
choice for kinetic energy penetrators. DU and tungsten 
perform about the same against semi-inHnite targets, and 
DU outperforms tungsten penetrators in oblique, spaced 
array targets, but because of environmental and subse
quent cost concerns, effort has focused on improving the 
performance of ·tungsten penetrators over the last few 
years. However, despite recent improvements in mate
rial properties, the penetration performance of tungsten 
still lags behind that of DU. One possible reason is the 
difference in deformation mechanisms at the leading 
edge of the penetrator during the penetration process
DO alloys tend to shear band and sharpen as they pene
trate the target material, whereas tungsten penetrators 
tend to mushroom and blunt. As a first step to deter
mine whether shear banding is truly the reason for 
superior DU performance, a review and summary of the 
available information was performed. This paper pre
sents a review of the fabrication, high strain-rate 
properties, and penetration phenomena of penetrators 
manufactured from both tungsten and DU alloys. Specif
ically, the effects of composition, processing, and heat 
treatment on material properties and penetration mech
anisms of these alloys are discussed. 

Introduction 
1.:.• 

. 

As part of an ongoing effort to develop ballistic/ma
terials correlations useful to the armor I anti-armor 
research and development community, Failure Analysis 
Associates, Inc. (FaAA) reviewed, assessed, and 
compared available information on penetration 
mechanisms of DU and tungsten penetrator alloys. 
Variables that influence the performance of kinetic 
energy penetrators include penetrator material 
properties and geometry, penetration mechanisms, 
launch dynamics, velocity, and target material properties 
and geometry. The objective of this phase of the project 
was to review, to the extent possible, the effect of 
material properties and penetration mechanisms on 
ballistic performance of these two materials. Penetration 
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mechanisms were of particular interest, as it is felt that 
the differences in these mechanisms may be the reason 
why DU and tungsten penetrators perform differently. 
As a frrst step, FaAA conducted an extensive review of 
published technical literature, searching the open 
literature (books, journals, conference proceedings), the 
OTIC database of unclassified reports, and other 
government and industry reports. The review and 
collection process also entailed visits and teleconferences 
with government and indl\stry personnel. 

While numerous recent studies of the differences between 
penetrator performances have focused on the effects of 
general penetration mechanics (such as the three penetra
tion phases defined by Wilkins and Reaugh Q)) and on 
projectile shape differences�, the focus of this paper 
is on the effect of material properties. Data on processing, 
composition, and heat treatment differences-as reported 
in studies such as Ekbom et al.'s (2) investigation of  
swaged and unswaged 93W-4.5Ni-2.5Fe projectiles and 
Brooks and Erikson's (§) experimental analysis of varying 
heat treatments and carbon contents of uranium alloys
were compiled as part of the FaAA review. In all, over 
100 literature sources were reviewed and over 30 govern
ment and industry contacts were made. To the extent that 
a comprehensive summary of these diverse studies is 
possible within the scope of this paper, the conclusions of 
these researchers are presented herein. 

Background 

When comparing penetrator performance, two types of 
targets must be considered: 1) monolithic semi-infinite 
targets in which the line of flight of the penetrator is nor
mal to the target and 2) spaced array targets-oblique tar
gets with multiple plates in which the line of flight of the 
penetrator is at an angle to the target. DU is currently the 
most widely used material in the United States for long 
rod kinetic energy penetrators. Concerns over environ
mental problems associated with disposal of materials 
with residual low-level radiation and the perception that 
DU kinetic energy research is at the mature stage of the 
development cycle (further improvements in DU's per
formance are considered to be incremental) have focused 
more attention on the continued development of alter
native penetrator materials-namely tungsten alloys. 



Despite the concerns about DU alloys, however, they con
tinue to be favored for kinetic energy applications because 
DU alloys are perceived to outperform tungsten alloys. 
This perception is due primarily to the superior perfor
mance of DU penetrators in oblique impacts. Hence, most 
of the current research in processing is to improve the 
performance of tungsten penetrators. 

Processing 

Research into improving performance through processing 
is being conducted both at the government laboratory and 
private industry levels. Some of the processing tech
niques being used are swaging, texturing, chemical vapor 
deposition (CVD), and alternative matrix formulations. 
The potential for use of hydrostatic extrusion and hot 
rolling processing to fabricate composite DU/tungsten 
penetrators has also been investigated. 

The end goal of most advanced tungsten processing 
research has been to match the dynamic material proper
ties of DU; this goal was based on the belief that improved 
material properties would increase the ballistic perfor
mance of tungsten. Considerable research has been per
formed along these lines in recent years, and material 
properties have been improved. However, improved 
material properties have not directly correlated with 
improved tungsten penetration performance. This has 
been demonstrated in both monolithic semi-infinite and 
oblique spaced targets; despite the improvement in tung
sten properties, the performance of the two materials 
against monolithic targets is still about the same, and DU 
still outperforms tungsten against oblique spaced targets. 
New techniques for forming both tungsten and DU I 
tungsten composite penetrators show the promise of 
penetrators that will outperform any of those currently in 
the United States arsenal, and further development of 
these penetrators is one objective of current research 
efforts. 

DU's penetration characteristics and availability make it 
an attractive choice for use as a penetrator material (2). It 
does, however, pose some processing difficulties. The 
material is sensitive to corrosion (§), to trace levels of 
impurities (2), and to variations caused by heat treatment 
(2). In addition, finely divided DU is pyrophoric; there
fore, unlike tungsten alloys, DU alloys cannot be easily 
processed by powder metallurgy techniques, and, 
although they can be cast and hot-worked by conven
tional techniques, they require special machining. Some 
DU powder metallurgy research is being conducted to see 

whether rapid solidification processing can be used to 
advantage; however, little work has q.Irrently been pub
lished in this area. 

DU production usually begins with UF4 (§_._JQ), which is 
derived from a nuclear weapons and power industry 
byproduct, UF6. Cast ingots of DU typically retain 
residual impurities of Fe, Si, Cu, Ni, C, and H2 from the 
reduction and vacuum-melt process. Hydrogen 
embrittlement is a concern for DU alloys, which are also 
sensitive to re-embrittlement (2JQ). The quality of DU 
alloys must be carefully controlled to minimize 
inclusions and mechanical property variations caused by 
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improper heat treatment. Penrice (.2) states that h 
treatment after quenching is the single most import 

eat 

. ki 1" D 
ant 

st
_
ep m ma ng qua 1ty U alloy penetrator material. As 

d1scussed below, tungsten matenals require similar ca . . re 
m processmg and heat treatment. 

Tungsten Processing 

Tungs
_
ten alloys used in penetrators are really composite 

mat:nals. They are composed of hard, brittle tungsten 
particles embedded in a soft, ductile metal matrix (most 
often nickel and iron, although copper, cobalt, and other 
met�!� have been used for matrix materials to provide 
duct1hty to the system). Higher volume fractions of 
tungsten in the alloy yield heavier penetrators, which in 
turn have greater kinetic energies for penetration. How
ever, a higher volume fraction of tungsten also yields 
greater contiguity between tungsten grains (tungsten
tungsten boundaries are fracture initiation sites) and 
means the alloy must contain less of the ductile matrix 
which retards cracks and redistributes stresses <11.lf). 

Several processes have been used to manufacture tung
sten �netrators. Among these are sintering, swaging, 
�trus10�, and CVD p�ocesses. Of these, sintering (which 
1s sometimes followed by swaging and annealing to give 
increased strength and ductility) is the most popular 
method. Hydrostatic extrusion has also being 
investigated as a method for making high performance 
tungsten penetrators. CVD has also been used in some 
research programs (U), although only to a limited extent 
and primarily for shaped-charge liner applications. 

The sintering process used is liquid-phase and is per
formed by compacting fine-grained (3-5 micron) tungsten 
powders and heating them above the eutectic tempera
ture of 1435°C in a hydrogen atmosphere. The resulting 
composite consists of rounded, tungsten grains (SQ-90 
microns) in a W-Ni-Fe matrix. The tungsten grains 
retain their BCC structure; however, small amounts of 
nickel and iron are in solid solution during liquid-phase 
sintering. Special attention must be paid to ensure 
complete densification, as small amounts of porosity 
from entrapped gas or solidification shrinkage will 
reduce ductility (11,14). 

After sintering, the resulting material must be cooled at a 
rate that will deter the formation of intermetallics that, 
along with impurities, can weaken the material by facili
tating an intergranular rather than transgranular failure 
mode across the tungsten grains. Although reports of 
the effects of cooling rates on observed toughness vary, 
the consensus appears to be that cooling at slow rates 
allows the formation of intermetallics and allows impu
rities (i.e., sulfur, carbon, phosphorous) to segregate to 
the grain boundaries, resulting in lower fracture tough
ness (11, 14, 15, 16, 17). German et a!. Q1) note that the 
effect of cooling rates lessens as the amount of impurities 
is reduced. It is also important to prevent hydrogen 
embrittlement from occurring because it, too, weakens 
the composite and causes intergranular failure to occur 
(14, 16. 18). As wilt,be discussed in greater detail below, 
transgranular failures are preferable to intergranular 
failures, as they allow a material to achieve higher 



strength and toughness before failing in quasi-static 
mechanical tests. 

The nickel-iron matrix material has an FCC structure, 
the ductility of which is dependent on the amount of 
post-sintering processing. Even though the matrix is 
ductile, the mechanical behavior of the W-Ni-Fe pene
trators approaches that of pure tungsten, since a low 
volume fraction of matrix material must be used to max
imize overall density. This phenomenon can cause 
tungsten penetrators to break up after initial impact with 
oblique targets, making them less effective in penetrating 
subsequent armor plates. Because of this problem, 
methods have been sought for increasing the ductility at 
constant overall density. Ductility may be increased by 
orienting the grains so that they are parallel to one 
another and parallel to the longitudinal axis of the pene
trator. Two methods for accomplishing this are to swage 
or hot extrude the W-Ni-Fe composite. The resulting 
preferential grain orientation produces stronger and 
harder penetrators. Annealing may also be used to 
increase ductility; it tends to preferentially soften the 
matrix. The "cold work" in tungsten grains is not signif
icantly affected due to the higher melting temperature of 
tungsten relative to that of the matrix material. 

To find the most appropriate, ductile, matrix material for 
penetrators, several alloys have been studied extensively 
(6, 11. 19, 20, 2L 22); primary among these are W-Co, W
Cu-Fe, and various formulations of W-Ni-Fe. 

Most of the reported research has focused on the nickel
iron alloy systems. Iron increases the matrix toughness 
and ductility @. The W-Ni-Fe system was chosen over 
the W-Cu-Fe system for several reasons. The metallur
gical reasons include that Cu has been noted to segregate 
to the boundaries and that the contiguity is about 13% 
higher in the W-Cu-Fe system than in the W-Ni-Fe 
system (W; also, a greater amount of transgranular 
cleavage has been observed in W-Ni-Fe alloys. These 
microstructural differences contribute to the increased 
performance of the W-Ni-Fe alloys. Furthermore, the 
ideal ratio of nickel to iron has been determined to be 7:3, 
as this avoids the formation of intermetallic phases Ql). 
According to Penrice (2), a major factor in the improve
ment of the W-Ni-Fe alloys over the last decade has been 
the control of impurities that segregate to the grain 
boundaries. 

Review of Material Properties 

j;.1 
' 

While the exact effects of material properties on ballistic 
performance have not been established, it has become 
apparent that harder, stronger materials are preferable 
for impacts into semi-infinite plates and more ductile 
materials are preferable for oblique impacts into spaced 
array armors. Improved material properties also have 
an effect at launch and allow higher launch speeds to be 
used. Hence, it is necessary to discuss the effects of mate
rial properties in order to assess relative penetrator per
formance. 

As discussed below, there are numerous differences in 
the material properties of DU and tungsten alloys. For 
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example, tungsten alloys work harden faster than DU 
alloys. DU alloys strain harden at a much slower rate, 
and still work harden after significant swaging (2). Also, 
Young's modulus for tungsten alloys is twice as large as 
for DU (9, 25). 

Wood and Dini <W comment that DU's excellent 
mechanical properties can be significantly improved by 
alloying and heat treatment. Wood and Dini note that 
alloying DU with 2 wt% niobium in the over-aged heat 
treatment condition significantly increases DU's strength 
without making its material properties sensitive to 
variations in heat treatment. Compositions containing 
greater amounts of niobium (in this case, 5.3 and 6.8 
wt%) are more resistant to corrosion and hydrogen 
embrittlement and can be heat treated in larger sections 
than is possible for DU-0.75Ti. The higher niobium con
tent, however, reduces the strength-ductility relative to 
that of DU-0.75Ti. In unrelated research, Magness @ 
has suggested that DU alloyed with 6 wt% niobium (DU-
6Nb) does not shear band (possibly due to its low 
strength and high work hardening rate), an observation 
that, if substantiated, could shed new light on the differ
ences in failure mechanisms between tungsten and DU. 
Because of the current industry focus on improving 
tungsten properties, the remainder of this discussion 
centers on that topic. 

Tungsten Material Properties 

Material properties are sensitive to impurities, micro
structure, and processing variations (11, 18, 28) that make 
it difficult to establish uniform properties. The material 
properties that have been recorded to date for tungsten 
alloys vary widely, and the following discussion makes 
brief note of these as an aid to those who might want to 
explore the subjects further. 

In general, ductility decreases with increased strain rate, 
as observed by Kaneko (W and Penrice �- Bose et al. 
@Q) confirm this observation for 90W-Ni-Fe; Meyer et al. 
(ill and Kunze and Meyer <W find that, for 91% 
tungsten alloys, ductility decreases as strain rate increases 
for both the as-sintered and the sintered, swaged, and 
annealed cases. 

Elongations up to 25% illJ.§), 29% QJ), and 35% ® 
have been reported for tungsten alloys. Ekbom (.f.Q) 
reports that elongation decreases as temperature de
creases and that tensile strength increases as temperature 
decreases. As temperature increases, the strain rate sen
sitivity of the material decreases (20. 30) and Bose et al. 
@Q) report that both strength and ductility appear lo be 
unaffected by strain rates (up to 40s-1) at 600°C. 

The strength of tungsten alloys has been a subject for 
much research, and the general finding is that, in agree
ment with most metals, strength increases with 
increased strain rate (15, 29. 30, 34) . .  Penrice (12) also 
notes that ductility decreases faster than strength 
increases for 97W-Ni-Fe systems. Kunze and Meyer® 
confirm that strength also increases with increased strain 
rate for 91% tungsten alloys; Meyer et al. @1) extend this 
to both the as-sin�ered and the sintered, swaged, and 



annealed conditions, finding the as-sintered condition to 
be the more strain rate sensitive of the two (by nearly a 
factor of two). 

The effects of swaging were further investigated by 
Penrice <V, Ekbom (2), and Kunze and Meyer (Q1.}. 
Penrice (Z) found that, as for most metals, as swaging and 
strain rate increase, tensile strength increases and the 
percent elongation decreases. Annealing after swaging 
can increase both ultimate tensile strength and elon
gation. 

Kunze and Meyer Q1) show yield strength to be greater 
in compression than tension for tungsten alloys. Wood
ward (n} tested 90, 95, and 97% W-Ni-Fe alloys in com
pression from 0.001 1 Is to 1000 1 Is and reports that flow 
stress increases with strain rate. Work softening was 
observed in these alloys when the strain rate was greater 
than 2 1/s. This phenomenon is attributed to the effect 
of temperature rise due to plastic deformation. 

Work hardening was found by Rabin et al. (1.!) to 
increase with increased tungsten content. Johnson (� 
found that 90W-7Ni-3Fe alloys work harden as the shear 
strain rate increases. He also reports that shear strain at 
failure decreases as shear strain rate increases, and that 
tungsten alloys show greater strain rate sensitivity than 
that measured for DU-0.75Ti. Harding Q2) found shear 
stress to increase as the shear strain rate increases, which 
parallels Abey and Stromberg's findings 00 for pure DU. 

Much of the data on fracture toughness of tungsten 
alloys comes from Kaneko QZ), who investigated W-Ni
Fe alloys with a 2:1 nickel-iron ratio. Kaneko found frac
ture toughness decreases linearly with the increase in the 
percent of tungsten (91 to 95.5%). This was found to be 
true for both as-sintered and 30% swaged material, 
although the as-sintered showed nonlinear behavior. 
Values at -40"C and 20°C were about the same. 

The most effective ratio of tungsten to matrix materials 
has also been the object of much research. It is generally 
accepted that the highest strengths ai:e obtained for tung
sten contents from approximately 91 to 93%, correspond
ing to contiguities from 0.3 to 0.4. Rabin et al. <W 
recently performed tests for W-Ni-Fe alloys that support 
the 93% value; current (unpublished) research seems to 
support the 91% value. 

Another subject for research is to establish hardness, ten
sile strength, and other mechanical properties for the 
matrix materials in tungsten alloy penetrators. Wood
ward Ql) has done some work on -hardness properties. 
In measuring the hardness of an alloy that had the same 
composition as the matrix of a 95% tungsten penetrator, 
he found that the hardness of the matrix was about 27% 
that of pure tungsten. He also observed that failure of 
the low density matrix was characteristic of a ductile 
failure, confirming the intrinsic ductility of the matrix. 

Penetration Mechanisms and Ballistic Performance 

The literature indicates that, against monolithic steel tar
gets, improved material properties do not guarantee 
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enhanced penetration. In fact, against monolithic steel 
targets, DU and tungsten alloys perform about the sam 
Against oblique spaced steel targets, increased ducti�� 
ity/toughness seems to enhance penetration. An advan
tage of DU penetrators is that they can bend when 
impacting an oblique target and, hence, face a lower pen
etration area 00. For this reason, DU alloy penetrators 
(which are more ductile than tungsten) generally outper
form tungsten alloy penetrators against these targets. 
Processing to increase material properties shows varied 
results against spaced array targets for tungsten alloy 
penetrators. Note that most of the available literature 
records performance against monolithic targets. The 
spaced-array target data is limited and the performance 
conclusions presented here are expected to evolve as the 
programs mature and more data is made available. 

Failure Modes Under Dynamic Loading 

During penetration, very little of the kinetic energy of 
long rod penetrators is transferred to the target. Depth of 
penetration is to a large extent determined by projectile 
length. Penetration is the process of moving material 
aside that results when the impact stress is greater than 
the flow stress of thEi target. When impact stress exceeds 
projectile and target flow stress, the projectile material 
deforms, and target penetration occurs at the expense of 
projectile erosion <1..22). Large hydrodynamic stresses 
created by the confinement of the target material are 
transmitted to the projectile, and the nearby free surfaces 
of the projectile are accelerated radially. During this pro
cess it is important for the projectile to maintain as sharp 
a point as possible so that the penetration energy is 
applied to as small an area as possible. Thus it is better 
for a penetrator to "sluff off' material that has expanded 
radially (i.e., through shear failure), rather than for it to 
deform and take on a "mushroom" shape. The projec
tile in this impact velocity range is actually decelerated by 
its own material strength. 

The mechanisms by which DU and tungsten projectiles 
penetrate their targets include hydrodynamic deforma
tion, mushrooming/macroscopic plastic deformation, 
erosion/localized plastic deformation, brittle fracture, 
adiabatic shear banding, and melting/thermomechanical 
interaction. The two penetrator material failure modes 
of most interest are: 1) mushrooming and 2) shear fail
ure. The mushrooming phenomenon occurs when pen
etrator material flows radially after its first impact with 
the target The shear failure phenomenon occurs when 
shear stresses separate penetrator material from the rest 
of the penetrator after it impacts the target. The most 
applicable difference in these two penetration modes is 
that the mushrooming failure mechanism expends 
energy to expand the penetration radially, whereas the 
more pointed shear failure expends energy to achieve 
greater penetration. Those penetrators that achieve 
shear failure at the nose also maintain a greater pressure 
on the target and make a more effective use of the 
penetration energy. 

It has been notec;ic(6, 40) that, at very high velocities, both 
DU and tungsten penetrators perform the same against 
thick, ductile targets. This may be because, at these 



velocities, both penetrators have essentially broken up 
and are flat-ended projectiles. Brooks and Erikson (2.) 
also conclude that DU and tungsten perform about the 
same at intermediate velocities. They note, however, 
that at lower speeds, superior mechanical properties do 
not necessarily mean better performance. 

Penetration Mechanisms of DU Alloys 

The principal penetration mechanism for DU alloys 
(DU-0.75Ti and DU-2Mo) against steel targets is adiabatic 
shear banding�. with some mushrooming. Adia
batic shear banding was first observed by Zener and 
Holloman (!£) in 1944, and was first noted in penetrators 
by Tardif in 1956 (1J.). Shear banding occurs during the 
high loading that a projectile sees upon impact with a 
target and allows the material to readily fail along the 
bands. This action creates the sharpened pencil point 
and sluffing off of material that allows the projectile to 
achieve greater penetration. 

Adiabatic shear is dependent on the localized generation 
of heat high enough to soften the material <1:!). During 
penetration, the penetrator will deform plastically at 
high rates of strain. This will result in an increase in the 
flow stress of the material due to work hardening and a 
competing decrease in the flow stress due to thermal 
softening (90-95% of the deformation goes into heat). 
When thermal softening overcomes the increase in flow 
stress, adiabatic shearing will occur. Adiabatic shear has 
also been extensively studied analytically (45, 46, 47), and 
there is general agreement that susceptibility to adiabatic 
shear increases as strain hardening decreases and ther
mal softening increases. This adiabatic shear phenom
enon is not particular to any crystal structure, as long as 
the above thermomechanical requirements are met � 
39. 48, 49. 50). Other penetration mechanisms have also 
been proposed for DU into steel targets. For instance, 
Penrice (2) notes that a low melting temperature Fe-U 
eutectic can form at the penetrator tip, which helps 
remove target/penetrator erosion products from the 
target hole. This is an alternate explanation of the target 
hole being narrower for the DU penetrators than for the 
tungsten alloy penetrators. Mach <2.1) has measured the 
temperature rise of tungsten alloys penetrating steel 
targets. He was able to determine that the penetrator 
temperature, at an impact velocity of 1200 m/s, quickly 
rises to approximately 1480°C. At impact velocities of 
1600 m/s, the temperature rises to approximately 1790°d: 
Gerlach (21.) has documented the formation of Fe-W 
molten material at the bottom of penetrator holes. 
Gerlach also states the melting point of the Fe-W is low
ered to approximately 1650°C. This evidence of molten 
material appears to be in agreement with Mach's data. 

Because of the properties of DU, the adiabatic shear band
ing failure mode is noted more often in DU penetrators 
than in tungsten. However, there have been DU alloys 
that have been noted not to fail due to adiabatic shear. 
One such material is DU-6Nb <2...22). This alloy is 
thought to be too soft to achieve the thermomechanical 
instability required for shear banding to occur. 
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Penetration Mechanisms of Tungsten Alloys 

Tungsten projectiles show little evidence of adiabatic 
shear banding against steel targets. In general, tungsten 
alloys show little evidence of adiabatic shear banding or 
brittle fracture of tungsten grains when shot into ceramic 
composite targets; however, Shockey et al. �. Rogers 
(±.§.), and Irwin aJ) report the repeated formation of 
shear bands in the mushroomed ends of tungsten pene
trators shot into ceramic and metal targets. Irwin offers 
the following explanation for this phenomenon. During 
the mushrooming of a penetrator, a fillet occurs as the 
penetrator flows radially. This creates high strains in the 
penetrator material and causes it to shear band and break 
off. This process repeats itself throughout the penetra
tion process, causing the observed periodic appearance of 
shear bands. 

Against steel targets, the principal penetration mecha
nism of tungsten alloys is mushrooming, with macro
scopic plastic deformation followed by erosion. Ekbom 
(W suggests that the deformation of the tungsten com
posite can be broken into two stages: 1) the deformation 
of the matrix and 2) deformation of the tungsten. The 
initial strain is localized mainly in the matrix, which 
rapidly work hardens so that the tungsten composite, 
acting as a single unit, deforms according to tungsten 
deformation behavior. ' 

Recent studies have investigated the penetrator/target 
interaction. Gerlach W studied 92W-5Ni-3Fe penetra
tors shot against steel targets. Residuals of these targets 
show evidence that the penetrator melts, leaving plumes 
of projectile material in the target cavity. Gerlach postu
lates that target and penetrator materials engaged in the 
interaction and friction weld zones lose their strengths 
and are extruded in the direction opposite to the direc
tion of penetration. This may be supported by the ongo
ing work of Caligiuri and Eiselstein (�, who have 
discovered, in examination of tungsten penetrators fired 
against ceramic composite targets, ceramic target material 
intermingled with the material of the recovered pro
jectile. 

Composite Penetrators 

In addition to the efforts underway to improve the per
formance of tungsten penetrators, a significant number 
of researchers are investigating the possibilities for de
veloping composite DU/tungsten penetrators that would 
combine DU's ductility with tungsten's strength. In the 
mid-1970s, Brooks (J) and Norris et al. <W recognized 
the importance of strength and ductility to penetrators 
and suggested that these requirements would probably be 
best met by some kind of composite penetrator. In 
particular they suggested mounting a uranium-alloy 
head onto a tungsten shaft to improve the performance 
of tungsten penetrators in oblique impact situations. 
Bruchey and Montiel (22.) suggested that the performance 
of a tungsten core would be enhanced against spaced 
targets if sheathed with DU. 

Bruchey et al. (2§) discuss tailoring penetrator properties 
using metal matrix somposite fabrication techniques. 



They describe seven different types of penetrators manu
factured using metal matrix composite manufacturing 
techniques. These were then shot against an oblique 
triple-spaced array. The best penetration was achieved by 
a coextruded DU I tungsten alloy (best in this case being 
that which had the highest velocity after penetrating 
three metal plates). This penetrator exhibited less bend
ing and deviation from line of flight than typical DU-
0.75Ti penetrators. The DU/tungsten alloy was fabricated 
by placing tungsten filaments in DU-0.75Ti ingots and 
heat treating and extruding the composite. The main 
advantage of this coextrusion technique was that it was 
done at low temperature, thus minimizing fila
ment/matrix interaction. 

As most of the new composite materials development 
programs are classified, little mechanical property and 
penetration data is available. Hence the data presented 
here is culled from only a few studies and may not be 
representative of the body of information that currently 
exists. Principal among the programs that offered 
information to this study is that being conducted by Los 
Alamos National Laboratory (LANL) to build composite 
DU I tungsten penetrators consisting of tungsten rods 
surrounded by DU (.2.2). LANL indicates that 
thermomechanical working of the microcomposite 
material appears to offer the best properties of any 
composite to date. They are currently evaluating all 
working technologies to deform the tUngsten particles in 
the DU matrix. To date this program has produced 
penetrators with a 50% increase in strength over kinetic 
energy penetrators currently in the US arsenal. 

The LANL DU/tungsten rods show a yield strength of 
133 ksi and total strain to failure of 56% (compression). 
Failure occurred in the tungsten rod, not at the DU I 
tungsten interface. Ultimate strength was measured to 
be approximately 75 ksi with very little ductility. Initial 
tests shot these penetrators into semi-infinite RHA, and 
they performed as well as the DU-0.75Ti penetrators. 

LANL will continue to investigate technologies that will 
produce aligned tungsten fibers in the uranium matrix. 
They have demonstrated the ability to deform tungsten 
particles using swaging, rolling, or hydrostatic high 
energy rate forming. To date thermomechanical work
ing of the material has been by rolling. The cuuent 
approach is to work the tungsten and uranium matrix 
under two separate conditions to optimize material 
properties in each material. Since uranium recrystallizes 
at a lower temperature than tungsten, the uranium 
matrix is worked and annealed repeatedly without 
recrystallizing the tungsten. They estimate that very 
large warm working reductions will be required to ade
quately deform tungsten particles. 

Conclusions 

The ballistic performance of DU and tungsten alloys 
against ceramic composite targets cannot be reliably con
cluded from available literature, although data may be 
available from classified sources. The dramatic variation 
in the performance of the two materials against mono
lithic steel and oblique spaced steel targets, and the 
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significant effect that an increase in ductility I toughness 
can have on the ballistic performance of both materials 
against spaced arrays indicates that a comprehensive 
effort should be undertaken to correlate material proper
ties with penetrator performance. . 

One possible reason for the difference in penetration for 
the two materials is that DU is more ductile than tung
sten and less likely to fracture upon impact. DU also has 
a greater resistance to bending moments resulting from 
penetration of spaced arrays. Furthermore, the essen
tially equivalent penetration performance between DU 
and tungsten in semi-infinite targets suggests that the 
facts that DU is more susceptible to adiabatic shearing 
and that tungsten tends to mushroom have only a sec
ondary effect on penetration. 

Conclusions, based on available data, include: 

• DU alloys and tungsten alloys respond differently to 
high-rate loading conditions, both in terms of 
mechanical properties and failure (penetration) 
mechanisms. 

- Under tensile loading, DU alloys exhibit a higher 
ultimate tensile, strength and a higher strain to 

.failure than tungsten alloys. 

- Under shear loading, DU alloys and tungsten 
alloys exhibit similar strengths, but DU alloys 
exhibit a higher strain to failure. 

- Against steel targets, both DU and tungsten 
tungsten penetrator tips undergo ductile flow. 
However, subsequent penetration results in 
bulged tip sharpening by shearing (adiabatic or 
not). This sharpening occurs more readily in DU 
than tungsten. 

- Against ceramic composite targets, tungsten 
alloys penetrate by erosion/localized plastic de
formation. 

• The ballistic performance of DU alloys and tungsten 
alloys against monolithic steel targets is similar- at 
best a 5 to 10% difference. Current improvements 
in mechanical properties of DU alloys' and tungsten 
alloys give at best a 5 to 10% improvement in ballis
tic performance. 

• Against oblique spaced arrays, DU alloys outper
form tungsten alloys. A significant increase in 
ductility/toughness could result in a substantial 
improvement in ballistic performance of tungsten 
penetrators. 

It appears that the best way (in the short-term) to improve 
the ballistic performance of tungsten ·alloy penetrators 
against oblique spaced arrays is to improve their resistanc:e 
to fracture during penetration. It may be ultimately poSSl
ble to achieve a sharper tip during penetration in tungsten 
alloys, similar to that which occurs in DU, by proper 
microstructural conM'ol. 
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